Homework 8

Solution

P $8.3 \quad\left[\right.$ a] $i_{\mathrm{R}}(0)=\frac{15}{200}=75 \mathrm{~mA}$

$$
i_{\mathrm{L}}(0)=-45 \mathrm{~mA}
$$

$$
i_{\mathrm{C}}(0)=-i_{\mathrm{L}}(0)-i_{\mathrm{R}}(0)=45-75=-30 \mathrm{~mA}
$$

[b] $\alpha=\frac{1}{2 R C}=\frac{1}{2(200)\left(0.2 \times 10^{-6}\right)}=12,500$

$$
\omega_{o}^{2}=\frac{1}{L C}=\frac{1}{\left(50 \times 10^{-3}\right)\left(0.2 \times 10^{-6}\right)}=10^{8}
$$

$$
s_{1,2}=-12,500 \pm \sqrt{1.5625 \times 10^{8}-10^{8}}=-12,500 \pm 7500
$$

$$
s_{1}=-5000 \mathrm{rad} / \mathrm{s} ; \quad s_{2}=-20,000 \mathrm{rad} / \mathrm{s}
$$

$$
v=A_{1} e^{-5000 t}+A_{2} e^{-20,000 t}
$$

$$
v(0)=A_{1}+A_{2}=15
$$

$$
\frac{d v}{d t}(0)=-5000 A_{1}-20,000 A_{2}=\frac{-30 \times 10^{-3}}{0.2 \times 10^{-6}}=-15 \times 10^{4} \mathrm{~V} / \mathrm{s}
$$

Solving, $\quad A_{1}=10 ; \quad A_{2}=5$

$$
v=10 e^{-5000 t}+5 e^{-20,000 t} \mathrm{~V}, \quad t \geq 0
$$

[c] $i_{\mathrm{C}}=C \frac{d v}{d t}$

$$
=0.2 \times 10^{-6}\left[-50,000 e^{-5000 t}-100,000 e^{-20,000 t}\right]
$$

$$
=-10 e^{-5000 t}-20 e^{-20,000 t} \mathrm{~mA}
$$

$$
i_{\mathrm{R}}=50 e^{-5000 t}+25 e^{-20,000 t} \mathrm{~mA}
$$

$$
i_{\mathrm{L}}=-i_{\mathrm{C}}-i_{\mathrm{R}}=-40 e^{-5000 t}-5 e^{-20,000 t} \mathrm{~mA}, \quad t \geq 0
$$

P $8.10 \quad$ [a] $\alpha=\frac{1}{2 R C}=0.5 \mathrm{rad} / \mathrm{s}$

$$
\begin{aligned}
& \omega_{o}^{2}=\frac{1}{L C}=25.25 \\
& \omega_{d}=\sqrt{25.25-(0.5)^{2}}=5 \mathrm{rad} / \mathrm{s} \\
& \therefore \quad v=B_{1} e^{-t / 2} \cos 5 t+B_{2} e^{-t / 2} \sin 5 t \\
& v(0)=B_{1}=0 ; \quad v=B_{2} e^{-t / 2} \sin 5 t \\
& i_{R}\left(0^{+}\right)=0 \mathrm{~A} ; \quad i_{C}\left(0^{+}\right)=4 \mathrm{~A} ; \quad \frac{d v}{d t}\left(0^{+}\right)=\frac{4}{0.08}=50 \mathrm{~V} / \mathrm{s} \\
& 50=-\alpha B_{1}+\omega_{d} B_{2}=-0.5(0)+5 B_{2} \\
& \therefore \quad B_{2}=10 \\
& \therefore \quad v=10 e^{-t / 2} \sin 5 t \mathrm{~V}, \quad t \geq 0
\end{aligned}
$$

[b] $\frac{d v}{d t}=-5 e^{-t / 2} \sin 5 t+10 e^{-t / 2}(5 \cos 5 t)$

$$
\begin{aligned}
& \frac{d v}{d t}=0 \quad \text { when } \quad 10 \cos 5 t=\sin 5 t \quad \text { or } \quad \tan 5 t=10 \\
& \therefore \quad 5 t_{1}=1.47, \quad t_{1}=294.23 \mathrm{~ms} \\
& 5 t_{2}=1.47+\pi, \quad t_{2}=922.54 \mathrm{~ms} \\
& 5 t_{3}=1.47+2 \pi, \quad t_{3}=1550.86 \mathrm{~ms}
\end{aligned}
$$

[c] $t_{3}-t_{1}=1256.6 \mathrm{~ms} ; \quad T_{d}=\frac{2 \pi}{\omega_{d}}=\frac{2 \pi}{5}=1256.6 \mathrm{~ms}$
[d] $t_{2}-t_{1}=628.3 \mathrm{~ms} ; \quad \frac{T_{d}}{2}=\frac{1256.6}{2}=628.3 \mathrm{~ms}$
[e] $v\left(t_{1}\right)=10 e^{-(0.147115)} \sin 5(0.29423)=8.59 \mathrm{~V}$

$$
\begin{aligned}
& v\left(t_{2}\right)=10 e^{-(0.46127)} \sin 5(0.92254)=-6.27 \mathrm{~V} \\
& v\left(t_{3}\right)=10 e^{-(0.77543)} \sin 5(1.55086)=4.58 \mathrm{~V}
\end{aligned}
$$

[f]

P $8.29 \quad \alpha=\frac{1}{2 R C}=\frac{1}{2(400)\left(1.25 \times 10^{-6}\right)}=1000$

$$
\omega_{o}^{2}=\frac{1}{L C}=\frac{1}{\left(1.25 \times 10^{-6}\right)(1.25)}=64 \times 10^{4}
$$

$$
s_{1,2}=-1000 \pm \sqrt{1000^{2}-64 \times 10^{4}}=-1000 \pm 600 \mathrm{rad} / \mathrm{s}
$$

$$
s_{1}=-400 \mathrm{rad} / \mathrm{s} ; \quad s_{2}=-1600 \mathrm{rad} / \mathrm{s}
$$

$$
v_{o}(\infty)=0=V_{f}
$$

$$
\therefore v_{o}=A_{1}^{\prime} e^{-400 t}+A_{2}^{\prime} e^{-1600 t}
$$

$$
v_{o}(0)=12=A_{1}^{\prime}+A_{2}^{\prime}
$$

Note: $\quad i_{\mathrm{C}}\left(0^{+}\right)=0$
$\therefore \frac{d v_{o}}{d t}(0)=0=-400 A_{1}^{\prime}-1600 A_{2}^{\prime}$
Solving, $\quad A_{1}^{\prime}=16 \mathrm{~V}, \quad A_{2}^{\prime}=-4 \mathrm{~V}$
$v_{o}(t)=16 e^{-400 t}-4 e^{-1600 t} \mathrm{~V}, \quad t>0$

P 8.42 [a] $t<0$:

$$
\begin{aligned}
& i_{o}=\frac{80}{800}=100 \mathrm{~mA} ; \quad v_{o}=500 i_{o}=(500)(0.01)=50 \mathrm{~V} \\
& t>0: \\
& \alpha=\frac{R}{2 L}=\frac{500}{2\left(2.5 \times 10^{-3}\right)}=10^{5} \mathrm{rad} / \mathrm{s} \\
& \omega_{o}^{2}=\frac{1}{L C}=\frac{1}{\left(2.5 \times 10^{-3}\right)\left(40 \times 10^{-9}\right)}=100 \times 10^{8} \\
& \alpha^{2}=\omega_{o}^{2} \quad \therefore \quad \text { critically damped }
\end{aligned}
$$

$$
\therefore \quad i_{o}(t)=D_{1} t e^{-10^{5} t}+D_{2} e^{-10^{5} t}
$$

$$
i_{o}(0)=D_{2}=100 \mathrm{~mA}
$$

$$
\frac{d i_{o}}{d t}(0)=-\alpha D_{2}+D_{1}=0
$$

$$
\therefore \quad D_{1}=10^{5}\left(100 \times 10^{-3}\right)=10,000
$$

$$
i_{o}(t)=10,000 t e^{-10^{5} t}+0.1 e^{-10^{5} t} \mathrm{~A}, \quad t \geq 0
$$

[b] $v_{o}(t)=D_{3} t e^{-10^{5} t}+D_{4} e^{-10^{5} t}$

$$
\begin{aligned}
& v_{o}(0)=D_{4}=50 \\
& C \frac{d v_{o}}{d t}(0)=-0.1 \\
& \frac{d v_{o}}{d t}(0)=\frac{-0.1}{40 \times 10^{-9}}=-25 \times 10^{5} \mathrm{~V} / \mathrm{s}=-\alpha D_{4}+D_{3} \\
& \therefore \quad D_{3}=10^{5}(50)-25 \times 10^{5}=25 \times 10^{5} \\
& v_{o}(t)=25 \times 10^{5} t e^{-10^{5} t}+50 e^{-10^{5} t} \mathrm{~V}, \quad t \geq 0
\end{aligned}
$$

